Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Exudate Classification Using Support Vector Machines and Neural Networks

After segmenting candidate exudates regions in colour retinal images we present and compare two methods for their classification. The Neural Network based approach performs marginally better than the Support Vector Machine based approach, but we show that the latter are more flexible given criteria such as control of sensitivity and specificity rates. We present classification results for diffe...

متن کامل

Credit rating analysis with support vector machines and neural networks: a market comparative study

Corporate credit rating analysis has attracted lots of research interests in the literature. Recent studies have shown that Artificial Intelligence (AI) methods achieved better performance than traditional statistical methods. This article introduces a relatively new machine learning technique, support vector machines (SVM), to the problem in attempt to provide a model with better explanatory p...

متن کامل

Business Failure Prediction with Support Vector Machines and Neural Networks: a Comparative Study

Bankruptcy prediction has attracted a lot of research interests in previous literature, and recent studies have shown that artificial neural networks (ANN) method achieved better performance than traditional statistical ones. ANN approaches have, however, suffered from difficulties with generalization, producing models that can overfit the data. This paper employs a relatively new machine learn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ecological Informatics

سال: 2018

ISSN: 1574-9541

DOI: 10.1016/j.ecoinf.2017.10.008